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A general Bayesian framework is introduced for the inference of time-varying parameters in nonstationary,
nonlinear, stochastic dynamical systems. Its convergence is discussed. The performance of the method is
analyzed in the context of detecting signaling in a system of neurons modeled as FitzHugh-Nagumo (FHN)
oscillators. It is assumed that only fast action potentials for each oscillator mixed by an unknown measurement
matrix can be detected. It is shown that the proposed approach is able to reconstruct unmeasured (hidden)
variables of the FHN oscillators, to determine the model parameters, to detect stepwise changes of control
parameters for each oscillator, and to follow continuous evolution of the control parameters in the adiabatic

limit.
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I. INTRODUCTION

Complex phenomena in nature and technology can often
be modeled successfully by stochastic nonlinear dynamical
systems, thereby facilitating the diagnosis of faults, the prog-
nosis of future conditions, and control. Examples range from
models of reactors [1] and helioseismology [2] to models
used in physiology [3] and neuroscience [4]. The problem of
inferring the parameters of such models from time-series
data has therefore attracted much attention over the past de-
cade [3,5-13]. In general, important control parameters of
the systems in question vary in time so that the system dy-
namics is nonstationary. It is highly desirable, therefore, to
extend the inferential framework to encompass almost-real-
time tracking of time-varying parameters of nonstationary
systems.

Most of the algorithms rely heavily on extensive numeri-
cal simulation [9,10,13], or require a large amount of data
[5.7] (cf. econometric series analysis [14]), and cannot easily
be adapted for parameter tracking in nonstationary stochastic
nonlinear systems. More importantly, most earlier calcula-
tions of flows produce biased estimates because they lack a
term related to the Jacobian of transformation from stochas-
tic to deterministic variables. The term in question gives [15]
a leading-order contribution to the inference results in the
presence of strong dynamical noise.

We recently introduced an analytic solution of the dy-
namical inference problem [15,16] based on Bayesian statis-
tics and a path-integral formulation of stochastic nonlinear
dynamics. It allows for fast, unbiased estimation of the
model parameters, provides optimal compensation for the
dynamical noise, and paves the way to almost-real-time
tracking of time-varying parameters. There are, however, two
important features that have not hitherto been considered:
measurement noise and nonstationarity of the dynamics.
They are often important in practice.

In this paper, we demonstrate how the Bayesian frame-
work can be extended to infer information encoded in time-
varying control parameters of a nonlinear nonstationary sys-
tem, almost in real time. In paper II [17], immediately
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following this paper, we consider an application of the
scheme to a model of physiological signaling.

Such an inferential framework can have a wide range of
interdisciplinary applications ranging from aerospace [18,19]
to nanosensors. In particular, it can be especially advanta-
geous in the analysis of signals from neuronal systems. Their
dynamical details are known only approximately. Internal
and measurement noises exert strong influences, and the time
variation of the control parameters is directly related to in-
formation coding. We focus on physiological applications,
therefore, and consider as an example the inference of time-
varying control parameters from the measurements of the
spiking dynamics of neural systems. The neural system is
modeled by a set of FitzHugh-Nagumo (FHN) equations
[20-23], a system that has been found useful in modeling
nerve fibers [24] and certain muscle cells, e.g., in the heart
tissue [25-27]. It has also been used intensively in studies of
passive myelinated axons [28] and various forms of arrhyth-
mia and cardiac activation evolution [29]. The highly non-
linear and nonstationary nature of the system dynamics
makes it difficult to apply standard techniques for the reliable
inference of control parameters.

We will show that our approach is able to decode the time
evolution of the control parameters in a system of neurons
modeled as FHN oscillators, including detection of their
large stepwise changes for each oscillator and continuous
variation in the adiabatic limit. Because the method is based
on nonlinear dynamical inference, the parameter-tracking al-
gorithm is effectively embedded into the learning inferential
framework, enabling us to reconstruct both the unmeasured
(hidden) variables of the FHN oscillators and the model pa-
rameters. To illustrate this point, we will reconstruct the sys-
tem parameters assuming that the original parameters of the
model are unknown, that only one coordinate of each oscil-
lator is available for recording, and that these measurements
are mixed by a measurement matrix.

The paper is organized as follows. Section II presents the
theory of Bayesian dynamical inference in the presence of
dynamical and measurement noises. An example of global
optimization both in the parameter and path spaces is pro-
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vided in Sec. III. In Sec. IV, the theory of Bayesian inference
for a system of L FHN oscillators is presented, providing the
basis for physiological applications. In Sec. V, the results are
summarized and conclusions are drawn.

II. BAYESIAN INFERENTIAL FRAMEWORK FOR
NONSTATIONARY DYNAMICS

A. A general approach

Let wus consider the following problem. Given
M-dimensional time-series data Y={y,=y(z,)} (t,=nh), how
can one infer the time variation of the unknown model
parameters and the unknown dynamical trajectory M

:{c(t),b(t),ﬁ,M,{x,l}}? It is assumed that the underlying
dynamics can be described by a set of L-dimensional (L
= M) stochastic differential equations of the form

%(1) = f(x]e) + \DE(). (1)

and the observations ) are related to the actual unknown
dynamical variables X'={x,=x(z,)} via the following mea-
surement equation:

¥(1) = g(x]b) + \NI5(0). @)

Here X is an M X L measurement matrix, &(r) and #(¢) are L-

and M-dimensional Gaussian white noises, and D and M are
(LXL)- and (M X M)-dimensional dynamical and measure-
ment diffusion matrices, respectively.

The problem is essentially stochastic and nonlinear and its
solution is given by the so-called posterior density
ppost(/\/l|y) of the unknown parameters M conditioned on
observations. The latter can be calculated in general form via
Bayes’ theorem,

4 (y| M)pprior(M)

ppost(M|y) = (3)

J 4 (y|M)pprior(M)dM

Here the prior density pyio:(M) accumulates expert knowl-
edge of the unknown parameters and the likelihood function
¢(Y| M) is the probability density to observe {y,(¢)} given
choice M of the dynamical model. Thus within the Bayesian
framework, the problem is reduced to the calculation of the
likelihood function and optimization of the posterior distri-
bution with respect to M. If the sampling is dense enough,
the problem can be conveniently solved using Euler mid-
point discretization of Egs. (1) and (2) in the form

X, =X, + hf(x:|c) + h\/gnn,

¥ =g(x,/b) + \/ﬁn (4)

where x::(xn+1+xn)/2. It was shown earlier (see, e.g.,
[15,30]) that for independent sources of white Gaussian
noise in Eq. (4), the probability to observe y,,, at each time
step can be factorized and written in the form
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1 1
P 1/X50€) =f WGXP<— 5[yn+1 - g(x,41[b)]"

XM_l[yrHl - g(xn+1|b)])
;exp<— Il[X —f(x"|e)]"
V@ah) D) 27

XD ![x, - f(x]e)] - g V. [f(Xn)|C]>an+1-

)

Summation over all the discretization points n=0,... ,N—1
yields the following result for the minus log-likelihood func-
tion S=Syy+Smeas=—1n€ (Y| M):

X

N-1

= Zinfb|+ 2 S {7 [16s,)le
n=0

~ N N
+ [Xn - f(X:|c)]TD_l[Xn - f(X:|C)]} + 51H|M|

N
1 .
+ 52 [V, — 2, X, D) ™M [y, — g(y,..X,/b)]
n=1
+(L+M)N In(27h), (6)

Xn17Xp

where X, =~,—". Here Sy, and S, are the dynamical (first
two terms) and measurement (next two terms) parts of the
minus log-likelihood function. We note that Sgy, is the minus
log-probability density in the space of dynamical paths and,
in the limit of N— o, h— 0, T=Nh= const, it coincides with
the path-integral presentation obtained earlier in [31].
Equations (1)—(3) and (6) provide a general Bayesian
framework for learning the state and the model of the system
(1) as well as for learning the parameters of the measurement
model (2) and for tracking the variation of the parameters of
the system in time. It can readily be extended to encompass
inertial measurement described by the following model:

b) + VN 5(1).

y=g(y.x

In the latter case, Sy, has a form that is similar to Sy, as

will be described in more detail elsewhere (see also [32]).
To find the general solution of the problem (1) and (2),

one can iterate optimization of S in the space of dynamical

paths {x,} and in the space of parameters {c,b,D, M} (see
[30]).

Let us assume that the optimal paths corresponding to the
hidden dynamical variables {x,} are found on the current step
of iterations (see, for example, Sec. IIT). At the next step of

iterations, the values of the model parameters {c,b,ﬁ,M}
can be updated using the following equations (cf. with [15]):

f(x|e) =F(x)c, g(y.x|b) = G(y,x)b, (7)

where matrices F and G have the form
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and {¢;} and {4} are the F- and G-dimensional sets of arbi-
trary base functions.
Choosing prior PDFs for ¢ and b in the form of Gaussian

distributions, and uniform prior PDFs for ﬁ and M, the fol-
lowing equations can be obtained to update model param-
eters (cf. with [15]):

N-1
B)=1 3 &, - B, -, (10)
n=0
(¢)=E (D)wa(D), (11)
o (x,)
wiD)=hS (ﬁjn-‘xn—vg” ) (12)
n=0
N-1
E.D)=h> F'D'F,, (13)
n=0

where F,=F(x,), and the components of the vector v(x) are

L
JF,,,(x
Vp(x) = 2 —= ( ), m=1,...,F. (14)
=1 0X
The parameters of the measurement model can be estimated
. - Simeas S meas .
using the conditions —==0 and -~ =0, recovering the
least-square results in the form
L
<M> = EE [yn - an][y}’l - an]T’ (15)
n=1
(b) = ©3,(M)z (M), (16)
N
zX,y(M) = 2 [GIM_lynl (17)
n=1
N-1
0,(M) =X GIM™'G,, (18)
n=0

where f}n = (A}(yn ,X,,).

Equations (10)—(18), coupled with the optimization pro-
cedure in the paths’ space, represent the general Bayesian
framework for learning a nonlinear stochastic dynamical sys-
tem from measurements that are corrupted by noise. Using
this approach, we can develop a method of fast on-line track-
ing of the time-varying parameters of nonstationary systems,
as described below.
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B. The main idea of the inferential framework
for nonstationary dynamics

The main idea of the method is to apply Egs. (10)—(18)
within a window moving along the time trace of the experi-
mental data, resulting in time-resolved inference of the
model parameters. The time resolution of the method is lim-
ited by the convergence of the model parameters, but can be
improved substantially if we note that only a few parameters
of the system have to be followed in time continuously,
while the rest of the model parameters can be learned effi-
ciently from a block of stationary data from the time series.

Indeed, in many practical applications, the majority of the
system parameters remain constant and only a few control
parameters vary in time. To achieve the best time resolution,
we introduce a two-step procedure, in which the tracking of
time-varying parameters is embedded into a Bayesian learn-
ing framework. As the first step, we select an interval of the
experimental time traces during which the system dynamics
is stationary and learn model parameters. In the second step,
we assume that the majority of the parameters of the system
remain constant and track only a few time-varying control
parameters.

To clarify this idea, one has to take into account various
characteristic time scales of the problem. The measured time
series are characterized by the sampling time step & and the
total measurement time 7,.,,=nh, where n is the number of
measured points. The system dynamics has an intrinsic char-
acteristic time scale 7, and characteristic time scales of slow
Tyow and fast 7p, variation of the model parameters. For the
FitzHugh-Nagumo model, 7, can be taken as equal to the
width of the spike. The time resolution of the method is
characterized by the convergence time of the inference
T..s(¢). Note that 7.(c) depends on the set of unknown
model parameters.

For the method to be applicable, the characteristic time
scale for slow variation of the model parameters has to be
larger than measurement time, 7oy, = Teas- 10 this adiabatic
approximation, slowly varying parameters can be assumed
constant. In the first step, it is further assumed that there
exists a time trace of length 7> 7,.((c) where all the param-
eters of the system can be considered to remain constant.
Equations (10)—(18) can then be used to learn the slowly
varying parameters of the model together with parameters of
the measurement model b. These parameters, once inferred,
are considered to be constant and known. In the second step,
the set of model parameters is divided into known ¢ and
unknown ¢ subsets. To infer fast-varying control param-
eters, one can use Egs. (10)—(13) substituting x with (x
—ﬁ‘,lc(k)) and I:“nc with ﬁ‘nc(l‘). The possibility of fast on-line
tracking of the control parameters arises in this approach due
to the fact that 7.(c™) can be made much shorter than
7-res(c)-

In the context of the present research, we are interested
mainly in the on-line tracking of the parameters of the physi-
ological signals that can be modeled as a system of a set of
FitzHugh-Nagumo oscillators mixed by a measurement ma-
trix. In the following sections, we will introduce a specific
example of a system that can be used to model physiological
measurements. Our primary goal will be to establish whether
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the convergence of the model parameters is sufficiently fast
to allow for the on-line tracking (decoding physiological in-
formation in real time) of the control parameters of the
model. This will be demonstrated in paper II [17].

Next, we provide further arguments related to the conver-
gence of the algorithm. We start by assuming that there is no
measurement noise, so that we can avoid the need for opti-
mization in the paths’ space. We then provide a brief ex-
ample of the optimization procedure in the paths’ space.

C. Convergence of the model parameters

So let us neglect measurement noise, assuming that time
traces of the state variables can be measured directly, that we
have K blocks of data, and that we are interested only in the
inference of the model parameters {c}. Even in this case, the
convergence of the model parameters depends essentially on
the specific system under consideration. However, a few gen-
eral remarks may be helpful in clarifying the issues to be
addressed. Note that each block of data can be measured
independently and used at the step k+1 of inference (k
=1,...,K) provided that the results at previous steps are
taken into account in the form of a prior distribution

pil{c}) = exp[— %(C — ) B (e~ Ck):| . (19)

Equations (12) and (13) can be then written in the form (see

[15])

N A A Vv
wo=El e +h > (FZD-&”——”), (20)
neN; 2
g-F  +n > FDF,. 21)
neNk

It is clear that the covariance matrix of the posterior distri-
bution is a sum over all the blocks and has the structure of a
Kronecker product,

E=®eQ, (22)
where
wl,n‘rbl,n wl,an,n
b= > : : ,
eNy,...,N,
! ! k wB,nwl,n lr//B,n(/lB,n

;.= ¢(x,), and Q=D Accordingly, all nonzero elements
of this matrix grow in time as 7=AN. On the other hand, the
second term in Eq. (21) remains finite for a fixed number of
points in one block N,. Therefore, ék_l approaches ék for
large T and ¢, becomes

A AmA v

c=c +De® > (F}D-lxn - —”). (23)
neNy 2

The convergence of ¢, is thus determined by the convergence

of residuals in Eq. (23). Clearly, convergence of the residuals

is proportional to the sum of eigenvalues of (IA),ZI: the pres-
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ence of large eigenvalues slows down the convergence of all
coefficients {c;}.

At the same time, base functions related to the control
parameters have a strong effect on the dynamics of the sys-

tem and usually correspond to large eigenvalues of ®. There-
fore, to achieve the best results in decoding nonstationary
dynamics, one can use the general dynamical inference
framework introduced above to learn most of the stationary
model parameters in a preliminary analysis of the system.
Next, by incorporating real-time inference into this inferen-
tial learning framework and excluding all but the most im-
portant nonstationary parameters from the tracking proce-
dure, one can improve the time resolution of the method by
orders of magnitude.

We note that to exclude the learned model parameters
from further analysis, one has to separate the vector field into
two parts £(x|¢)=F"(X|cxnown) + I (X| Cunknown) and to use [X
£ (X| Cnown) ] and (X | € nknown) instead of x and f(x|e¢), re-
spectively, in Egs. (10) and (12). With this trivial modifica-
tion, the method will allow for fast on-line tracking of the
parameters of nonstationary nonlinear dynamical systems.

In the context of physiological applications, polynomial
base functions and relatively small noise intensities are of
special interest. It is clear that in this case the smallest ele-

ments of & correspond to the highest powers of polynomials.
In particular, in the case of a symmetric one-dimensional
(1D) potential, the contribution of the polynomials of order

m to the diagonal terms of ® will be proportional to (x™)
o« D™, Accordingly, if the coefficients of the polynomials of
power 3 can be learned before applying the on-line tracking
procedure, the time resolution of the method can ideally be
improved by three orders of magnitude for typical values of
D=0.1. This effect will be demonstrated in paper II [17]
using as an example a system of mixed FHN oscillators. In
the next section, we provide a brief example of the global
optimization procedure, including optimization in the trajec-
tory space, that can be used to learn model parameters in a
general case before applying time-resolved methods.

ITII. GLOBAL NONLINEAR OPTIMIZATION IN THE
SPACE OF DYNAMICAL TRAJECTORIES

A global optimization of the cost function in the space of
the model trajectories of nonlinear stochastic dynamical sys-
tems is a long-standing problem in the theory of stochastic
processes. A number of methods have been suggested earlier
to solve this problem, including methods based on the Mar-
kov chain Monte Carlo (MCMC) [33], the extended Kalman
filter [10], and the Langevin method of sampling the poste-
rior [32]. In our earlier work, we generalized an extended
Kalman filter approach [30] and the MCMC [34] to sample
the paths of continuous nonlinear stochastic systems. Here
we will describe briefly a method based on global nonlinear
optimization utilizing an explicit analytic form of the gradi-
ent and the Hessian of the cost function and the conjugate-
gradient method (see also [35]).

Indeed, let us consider the case in which g(y,,x,|b)

=f‘xn. In this case, the Hessian H of S takes the form
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AA A h 0
= FTM‘IFé,m, + = [tr(I)(X |C)] nm
Jx, X, 2 9x, dX,,

B,, =

nm

1~ A of TA_I A of
+-D76,,+h\Vh+— | D\ Vh+—|F,,
h d ox,

Xn

T A
- h[x, —f(x le)] D- |:(?X2:|5nm

n

of )Tﬁ_ s
axn—l ot

—hf)“(i/h+ if)a (25)
(7Xn m,n+1

—h(i/h+

and the gradient (%S of S has the form

as A A A
—=—(y,-I'x))™'T' 9x,
).
h 9 . * H-1
v [f(x,)le]} + [%,- —f(x_ [c)]'D
Jx,,
. % T—1 | )
- [x, - f(x"]e)]'D™! I+ h (26)

Given the form of the grad1ent -— and of the Hessian H
global optimization in the paths space can be performed
especially efficiently.

Given a set of noisy observations )/, we first minimize S
with respect to X keeping the model parameters fixed. Ac-
cording to the standard conjugate gradient procedure [36],
we do the following steps:

(i) Choose initial values for the state vector X, and choose
initial directions dy=-VS(X}).

(ii) Update values of the coordinates using X; =X+ ad,,
where

a==[dg V S(Xp) V[dgH(Xp)d,].

(iii) Update direction, using

= VS(X) + SIS
) R
Once the conjugate gradient algorithm has converged to
some global minimum &’ in the space of dynamical trajecto-
ries, we use this trajectory to infer model parameters by ap-
plying Egs. (10)—(13).
Consider as an example a nonlinear system with a stable
limit cycle in the form
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FIG. 1. (a) Example of corrupted-by-noise measurements (27)
with intensity of dynamical noise (§%(l)>=0.1 and (53(t)>=0.2 and
the amplitude of measurement noise 0.4 in both coordinates. (b)
Recovered stochastic dynamics of the system (27) (dotted line) is
shown in comparison with the actual dynamical trajectory (solid
line).

. 2
Xy =2 = XX+ &(1),

Xy =—x;+0.1(1 = x)x, + &(1). (27)

The state of the dynamical system is unknown. We assume
for simplicity that both coordinates were measured with
measurement noise of amplitude 0.4 in both coordinates, i.e.,

vi([©) =x,(t) +0.4v(r), i=1,2.

Here the measurement matrix has the form I'=1 and the

measurement noise matrix has the form M=0.161.

We further assume that the vector field of Eq. (27) is
unknown and model it using the following set of eight
known base functions:

ey ey ey 2 a2 3.2
D = {150 300;x7 3455010057 3 X 1% )

In explicit form, the model of the limit cycle system (27) is

8 8
X=X i+ E(0), =2 e+ E(1). (28)
i=1 i=1

We now apply the algorithm described in the previous
section to infer both the unknown state and the vector field of
this system. An example of noise-corrupted measurements of
the system (27) is shown in Fig. 1(a). Our technique allows
recovery of the stochastic dynamics of the system (27) as
shown in Fig. 1(b) and to estimate model parameters. The
results of the estimations are shown in Table I. It is evident
that the optimization in the paths’ space can be performed
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TABLE 1. Convergence of some coefficients of the system (28).
We have used one block of data with 40 000 points.

Coefficients True values  Inferred values  Updated values
c3 1 1.46 1.08
Cy 0 —42.64 0.02
c1o -1 -10.93 -1.07
ci 0.1 -35.68 0.258
C1s 0 1.82 0.005
C16 -0.1 -27.96 -0.17
Dy, 0.04 325 0.045
Dy, 0 6 0.006
Dy, 0.04 318 0.03

efficiently in the presence of measurement noise. In practice,
however, the conjugate gradient algorithm requires about 20
steps for convergence. The complexity of such an algorithm
(calculated as a number of matrix operations) is much higher
that the complexity of the calculations of the model param-
eters using Egs. (10)—(13). Accordingly, for the fast on-line
applications of the algorithm one should avoid global opti-
mization in the space of dynamical trajectories by, e.g., sup-
pressing measurement noise.

The main focus in the remaining part of the research will
be the development of the fast on-line tracking method for
the time-varying parameters. For the sake of simplicity of
our further arguments, we therefore assume that measure-
ment noise can be neglected. In the next section, we will
introduce a specific example of a model that can be applied
for the interpretation of physiological time-series data using
our Bayesian inferential framework.

IV. SYSTEM OF FITZHUGH-NAGUMO OSCILLATORS

In the context of physiological applications, we consider
the following dynamical model (see [17] for details of the
numerical analysis of this model):

x=f(x|c) —q+ \/Ef(t), X=(xp, ... ,X0), (29)

q=-Bq+ x, (30)

representing a set of independent FitzHugh-Nagumo sys-
tems. The measurements are modeled by the following equa-
tion:

y:)A(x. (31)

Note that the q coordinates are “hidden” or unobservable,
while the x coordinates are accessible for measurement and

are mixed by the measurement matrix X.

The main assumptions of the model (29)—(31) are that the
measurement noise can be neglected together with the noise
in Eq. (30). Under these assumptions, sampling in the paths’
space can be avoided, thus paving the way to the fast on-line
decoding of physiological information. Indeed, in this case
Eq. (30) can be integrated,

PHYSICAL REVIEW E 77, 061105 (2008)

q() = yf dre PU7x(7) + e P'q(0). (32)
0

Here q(0) is a set of initial coordinates that needs to be
inferred along with the rest of the parameters. Therefore, the
unobservable variables can be excluded from further consid-
eration. According to the trapezoidal rule, the discrete ver-
sion of Eq. (32) is

k

q(t) = yhY, e PUirx(r,) — %/(X(tk) + e Pix(ty))
r=0

+ e Piq(0). (33)

The resulting model and its discretization have the follow-
ing form:
k
Xpo1 = hE(X[0) — yh? 2 e PUtx(1,)
r=0

2
+ x5 + e Pixl)]

— he Pirq(0) + A+ O(h?), (34)
where Ak=f§’;+1dt’§(t’) and x: = Xk%ﬂk
The FHN oscillator is a special case of the dynamics in
Egs. (29) and (30). It will be the subject of our numerical
experiments,

Uj=—Uj(Uj—C(j)(Uj— 1)_‘]/"' 7]j+dj§j’
q;=—PBq;+ v,

EOEE) = 8,11, j=LL.  (35)

The system described in Eq. (35) represents the simplified
dynamic of L noninteracting neurons [21], each of them la-
beled with j; v; represents the membrane potential while g;
are slow recovery variables.

In practice, signals that are collected from biological sys-
tems are mixed with a measurement matrix; to tackle this
problem, we assume that the measurement variable is y;,
which is a linear transformation of v,

yile'jvj. (36)

Here the mixing matrix X is an unknown quantity, therefore
y; contains all the accessible information. In Fig. 2, there is
an example of y; as in Eq. (36).

To write explicitly the system to be inferred, expressions
of g; from Eq. (33) and of v, in Eq. (35) are plugged into Eq.
(36). Within our inferential framework, this trajectory repre-
sents the output of the following model:

Vi=Ayyi+ Byt Cijiny iy ym + 7

k k
—h2 e P yi(t,) - 2 e Pz + D&+ (1),
r=0 r=0

(37)

where Z; are the components of the boundary condition q(z
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FIG. 2. (Color online) Example of a typical component y(z)
from Eq. (36) with mixing matrix (é f). Values of the parameters are
a=a,=02, 7,=7,=0.112, B=0.0051051, y,=7,=0.0051, d,
=0.001, and d,=0.002. Coefficients 7, and 7, change ranging from
0.05 to 0.25.

=0), and use of the following definitions was made:

_ —1
Aij_Ximam(X )mj,
Bijl =Xim(1 + am)(X_l)mj(X_l)mh

Citim = XX D a XX,

Loy=X;v(X ). (38)

In Egs. (38), a sum over repeated indices is implied and all
the indices range from 1 to L. Also, the diffusion matrix D;;
is expressed in terms of d; as

Dji=indi' (39)

Finally, Egs. (38) contain the crucial model parameters 7;
that are the focus of our inference. They are related to the
original model parameters 7; by

7;=X;im;. (40)

We treat y;(¢) in Eqs. (38) as measured variables. As a result
of the inference procedure, we will recover the matrix ele-
ments of A,B,C,I",D, 7.

The parameters of the modified and original dynamical
models can be learned effectively using stationary blocks of
the time-series data, as will be shown using numerical ex-
amples in paper II [17]. Once the constant parameters of the
model have been learned, the algorithm will allow for very
fast on-line tracking of the time-varying control parameters.
Details of the convergence of the model parameters and of
the time resolution of the parameter tracking will be pro-
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vided in paper II, using as an example synthetic time-series
data generated by the model (29)—(31).

V. CONCLUSION

Our Bayesian framework for the time-resolved inference
of a nonstationary stochastic dynamical system allows for
learning the parameters of the dynamical and measurement
models from noise-corrupted time-series data with subse-
quent fast tracking of time-varying control parameters. Con-
vergence of the method in the parameter space, and global
optimization in the space of dynamical trajectories, are dis-
cussed. It is shown that to achieve the best time resolution,
one has to embed the time tracking of nonstationary dynam-
ics into an inferential learning framework that allows for
preliminary inference of the model parameters in the station-
ary regime. Furthermore, one has to reduce the measurement
noise to a low level to avoid global optimization in the tra-
jectory space, which is necessarily time-consuming. In doing
so, one can improve the time resolution of the method by
several orders of magnitude. To apply this technique to the
real time decoding of information from nonstationary physi-
ological time-series data, we introduce a specific model of
FHN oscillators mixed by an unknown measurement matrix.
Next we show how this model can be reduced to allow for
the fast on-line tracking of nonstationary parameters in a
Bayesian inferential framework. A numerical investigation of
this system is presented and discussed in paper IT [17].

Note that for simplicity of the analysis, we have excluded
dynamical noise from the equation for the recovery variable
in Eq. (30) (cf., e.g., [23]). It is possible, however, to extend
the proposed method to encompass the case of a stochastic
linear differential equation for the hidden dynamical variable
by adding a stochastic integral to the right-hand side of the
reduced model (34). The corresponding extension of the
method will be discussed in more detail elsewhere.

Finally, we emphasize the broad interdisciplinary applica-
tions of the method and we comment that it can readily be
extended to take into account the effects of multiplicative
and colored noise and of binary variables in the model.
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